
with lzo algorithm

 File compression with LZO algorithm using
NVIDIA CUDA architecture

L. Erdődi*

* Óbuda University, Faculty of John von Neumann, Budapest, Hungary
erdodi.laszlo@nik.uni-obuda.hu

Abstract— File compression in the case of large files can be

time consuming and it is not even necessarily effective. Vast

majority of the compression software use algorithms with

implementations for CPU architecture. From the beginning

of the 2000’s the performance of graphic processing units

(GPU) have been continuously increasing and at the present

time in some cases the GPU exceeds the CPU in

performance. However this high performance of the GPU is

rarely exploited except in the case of some special tasks such

as password cracking or linear algebra calculations. One of

the most well-known compression algorithms is the LZO

(Lempel-Ziv-Oberhumer). This study discusses the possible

ways for the implementation of LZO for GPU Fermi

architecture. Three different algorithms are provided and

compared and finally it is also shown that the use of GPU

can significantly decrease the time of the file compression.

I. INTRODUCTION

Several algorithms and implementations have been
developed for file compression in the past years. The most
well-known methods of these are the LZW (Lempel-Ziv-
Welch) and the LZO (Lempel-Ziv-Oberhumer)
algorithms. The implementation of these algorithms runs
on one thread without parallel procedures. In the case of
the LZW algorithm a large dictionary file is built which is
interpretable only when it is read together with the
compressed file from the beginning of the decompressing
process. So this way paralleling is impossible. The LZO
algorithm manages the files to be compressed in blocks so
theoretically the paralleling is possible when the parallel
procedures are running in different file-blocks at the same
time. However at the present time because of the efficient
use of the CPU processor architecture (L1, L2, L3 cache)
the implementation of the LZO algorithm uses only one
thread for the compression.

From the 2000’s GPU architectures have appeared.
Initially GPU (graphics processing unit) was only used for
the increasing of the speed of graphical procedures.
However it turned out that GPU can be effective in the
case of several well-parallelable procedures such as e.g.
linear algebra calculations or password cracking.
Nowadays GPU hardware can possess as good 1024
processors (e.g. NVIDIA GTX680) and this can greatly
increase the calculation speed.

According to the above mentioned the possibility of the
use of GPU for the acceleration of file compression arises.
The present study discusses in details the implementation
of LZO algorithm for NVIDIA CUDA architecture.

II. THE LZO COMPRESSION ALGORITHM

The LZO algorithm is introduced in the following [1].
The file to be compressed is cut into file-blocks which
have the same size as the L2 cache of the processor. The
compression of each file-block is done the following way:

During the processing of the file-blocks hash values are
being established per each byte group of four. The value
of the hash function is formed from the combination of the
value of the actual and the three previous bytes (see
Figure 1). During the compression a hash table is kept
which is able to store one memory address for each hash
value. The hash function is chosen in a way that the size
of the hash table (memory address size * hash variations)
equals to the size of L1 cache. This secures the quick run
of the algorithm.

According to Figure 1 when from the combination of
the zeroth, first, second and third bytes a hash is formed,
the memory address of the pointer assigned to the third
byte is written into the given place of the hash table. The
process goes on like this, the fourth memory address is
written into the place of the value from the hash of the 1st,
2nd, 3rd, 4th places of the hash table.

Suppose that a text file with the following data is
compressed:

“SOMETHING IS A THING, THAT IS IMPORTANT”

LINDI 2012 • 4th IEEE International Symposium on Logistics and Industrial Informatics • September 5-7, 2012; Smolenice, Slovakia

978-1-4673-4519-4/12/$31.00 ©2012 IEEE

Figure 3. Performance comparison of CPU and GPU
[2]

Figure 2. Architecture of NVIDIA GPUs [2]

Let the pointer assigned to the beginning of the text be
PTR0. Into the hash place (’S’,’O’,’M’,’E’) of the hash
table PTR0+3 is written, into the place of hash (O, M, E,
T) PTR0+4 is written, etc.

In order to detect the recurrences the algorithm checks
the already existing values when writing into the hash
table. If the new memory address and the initial address (a
random number at the beginning) are close values, the
algorithm will check whether there is a real recurrence, so
the byte groups of four are compared (this comparison is
necessary because of the initial random hash values and
the hash collision). In the case of the example above the
hash (T, H, I, N) is calculated in the 16th step, so the value
PTR0+15 should be written into the table. However there
already exists a memory address which is the value
PTR0+7 (it has been written into the table at the 5th step,
at the word “something”). In order to decide whether there
is a hash collision or not, the algorithm compares the
values:

^PTR0+7 == ^PTR0+15 and ^PTR0+6 == ^PTR0+14

and ^PTR0+5 == ^PTR0+13 and ^PTR0+4 ==

^PTR0+12

If the condition above is fulfilled, it means that the
same byte group of four is at both places (in this case the
„thin” part of the word). At this place the file can be
compressed in that way that instead of the recurrence the
initial position and length of the original word-part is
written into the given position.

“SOMETHING IS A (RECURRENCE from the place

back 11 bytes, length: 5 bytes), THAT IS IMPORTANT”

For the determination of the length of the recurrence the
check of the coincidence goes in the memory from bytes
to bytes. In the case above ^PTR0+8 equals to ^PTR0+16
but in the next step this is not fulfilled anymore (space and
comma characters are not coincide). It means that in the
compressed file only the length and the object of the
coincidence are stored.

There are other several subtle details hiding in the
algorithm which are not discussed here, such as e.g. the
most compressed description of the recurrence, or the size
of the memory addresses difference where it is worth to
take into account the recurrence.

The algorithm is highly efficient and quick because of
the matching of the sizes of the file blocks and hash table
to the L1 and L2 caches. In the case of a text file with
many recurrences (e.g. log files) 5% compression of the
file is often possible.

III. GPU ARCHITECTURES

GPU architectures appeared first in the 2000’s. At the
beginning their performance was hardly higher than the
CPU performance at that time. However the improvement
of the graphic cards has been enormous in the last years.
One of the fundamental factors of this improvement was
the increasing of the number of the processors on the
graphic card. The first GPU had a single chip processor
(NVIDIA GeForce256) while the latest GTX 680 graphic
card possesses 1024 processors. Besides increasing the

number of the processors there are several other
improvements that promoted the speed increment, e.g. the
invention of the shared memory with almost as high
performance as the registers, the increasing of the latency
of the device memory of the GPU and the introduction of
the Fermi architecture on the graphic cards from the
GTX480 model. The performance of the GTX 680
graphic card exceeds 3000 GFLOP/s (see Figure 2 [2]).

The performance values of Figure 2 show extreme
differences between the CPU and the GPU, but it is
important to know that these values are only theoretic.
When using the GPU several performance decreasing
factors have to be considered. The difference in the
characteristics can be experienced when running
algorithms which are well parallelable. The 1024

processors of the GTX680 card are working together in
the groups of eight (multiprocessor), but if the reading of
the data from the memory is slower than the calculation
itself then the high performance of the graphic card will
not reveal.

The architecture of the latest GPU is shown in Figure 3.

The GPU device possesses own memory, where every
data have to be copied into at the beginning of the
calculation. After the completion of the calculation the
data have to be copied again back to the host (CPU)
memory. This can cause a huge overhead in the case of a
compression algorithm since the copying of the file means
loss of time.

The multiprocessors share the work between each other
with computational blocks. The work-execution of the
multiprocessors is uniform. This is determined by a
general program code which is applied for its own block
by each multiprocessor. When a multiprocessor is done
with its work it starts to work on a new block. In the case
of a GTX580 card which possesses 64 multiprocessors

L. Erdodi • File Compression with LZO Algorithm Using NVIDIA CUDA Architecture

Figure 4. Coalesced and non-coalesced memory
access [3]

Figure 5. GPU compression Algorithm #1

(64x8 = 512 cores) it is worth distributing the task in a
way that the number of the blocks is the multiple of 64. If
the task comprises 65 blocks, the 64 multiprocessors will
do the calculation, and then the first which finishes with
its own block will start with the calculation of the 65th
block. The other 63 multiprocessors will wait without
work in this case.

The work-execution of the multiprocessors are done by
the threads. In each block the work has to be divided into
threadblocks. Similarly to the previously shown process
the threadprocessors of the multiprocessor do the work of
the threadblocks. When a threadprocessor is done with its
work it starts to work on a new threadblock (so the
number of the threadblocks should be chosen according to
these). While the block-works of the multiprocessors are
independent of eachother (and therefore it can be perfectly
paralleled) the parallel work of the threads requires
several limitations. Often the execution time is influenced
by the appropriate application of the threadblocks. The
threads are theoretically able to work independently, but
the reading of the device memory is done in so-called
non-coalesced way. It means if the threads read the data
from the adjacent part of the memory then the reading will
be parallel (coalesced access, see Figure 4 [3]), but if the
reading is done from different memory parts then the
multiprocessor will serialize the task so the execution can
take even 8 times as slow as in other cases. This
architectural solution plays a major role when
implementing the LZO algorithm.

IV. GPU LZO IMPLEMETATION POSSIBILITIES

The Lempel-Ziv-Oberhumer (LZO) is one of the fastest
among the CPU compressing implementations. There is
implementation for GPU but it uses and parallels the
algorithm for zip files. In the following a new solution is
presented where the possible GPU implementations of the
LZO algorithm are introduced.

As it is previously pointed out the GPU multiprocessors
can work independently. So for example in the case of a
GTX580 graphic card (64x8 processors) the increase of
the calculation speed can be theoretically 64 times. The
first solution of the implementation is the following
(Algorithm #1):

Let the blocksize be equal to the size of the L2 cache of
the GPU card. Let us copy into the device memory data of
the size L2 multiplied by the number of the
multiprocessors. Run the compression process by blocks

(one block for each multiprocessor). In one multiprocessor
only one thread is enabled. Let the size of the hash table
be equal to the size of the L1 cache of the multiprocessor
(see Figure 5). Let us copy the compressed data back into
the host memory.

Step 1: copying data of the size L2 multiplied by the
number of the multiprocessors from the host memory into
the device memory

Step 2: compression by blocks, one multiprocessor
calculates one block, using one thread

Step 3: copying of the compressed data from the device
memory back to the host memory

Step 4: repeating Steps 1-3 until it is required according
to the file size

The time loss comes in this case from the followings:

- The file has to be copied into the device memory and
then back to the host memory

- The reading of the device memory is slower during
the compression process than the reading of the data in the
L2 cache of the CPU

Regarding the GPU the following factors are increasing
the calculation speed:

- One multiprocessor works with one thread so non-
coalesced memory access has no possibility to occur

- The selected sizes of the hash table and the blocks are
favorable for the Fermi architecture GPU

In the case of Algorithm #1 it is not taken into account
that a multiprocessor possesses more than only one thread
processor so the exploitage of the multiprocessor is small.

In the case of Algorithm #2 this problem is about to be
solved.

Algorithm #2: Let more than one thread processor work
in one multiprocessor, so in this way a multiprocessor is
able to compress more than one block at the same time.

LINDI 2012 • 4th IEEE International Symposium on Logistics and Industrial Informatics • September 5-7, 2012; Smolenice, Slovakia

Figure 6. Algorithm #3 multiprocessor process flow

Figure 7. Measured performance of CPU and GPU (Algorithm #3)
file compression using LZO algorithm

Regarding the GPU the following factor is increasing
the calculation speed:

- many blocks can be compressed at the same time
(multiprocessor * thread count)

The time loss comes in this case from the followings:

- because of the continuous reading and writing of the
hash table the execution of the threads within a
multiprocessor is continuously being serialized so we get
back to Algorithm #1 with the difference that the data size
is bigger than the cache of the multiprocessor and this can
cause time loss

In order to eliminate the drawbacks of the two previous
algorithms a third has been worked out.

Algorithm #3 (see Figure 6): Only one multiprocessor
is working on one block (similar to Algorithm #1) but
there is a special thread of each multiprocessor which does
the main calculations of the compression. In the case of
the processes where the coalesced memory latency is
possible (e.g. determination of the length of the recurrence

or calculating the cheksum), the other thread processors
start to work as well.

It results the increasing of the speed of Algorithm #1.

The previously introduced algorithms were tested on
several files of different sizes and types. Figure 7 shows
the compression and decompression speed of a large
logfile (compression efficiency 6%).

V. CONCLUSION

Besides the introduction of GPU technology and
parallel compressing algorithms, the present study
introduced the implementation possibilities of the LZO
algorithm on GPU architectures. GPU architectures are
keeping developed but the main advantages which come
from their architecture and the numbers of the processors
can only be exploited when solving real parallel
computing on them. Three new algorithms were
introduced for the implementation of LZO algorithm on
GPU. The calculation efficiency of Algorithm #3 exceeds
the efficiency of the CPU compression implementation.
Using NVIDIA GTX580 (512 cores) graphical processing
unit with Intel Core i7-2600 CPU with Algorithm #3 the
compression process is 20% faster with GPU than with
CPU. The latest graphical processing unit nowadays is the
NVIDIA GTX680 model. This unit possesses 1024 cores,
this means that using this device with Algorithm #3 the
calculation speed estimated to be even more than two
times higher than with CPU.

The development of GPU devices is continuous so the
performance is growing as well which means that the here
presented speeds will increase (of course the CPU is being
developed but according to the past and present
developing processes the efficiency of the GPU for this
special problem is expected to be better than the CPU
efficiency). A great breakthrough for GPU compression
will be if the thread processors are able to read the
memory independently perhaps directly from the host
memory (CPU RAM).

REFERENCES

[1] M. F. X. J Oberhumer “LZO source code”
www.oberhumer.com/opensource/lzo

[2] “NVIDIA CUDA Compute Unified Device Architecture –
Programming Guide” www.nvidia.com, 2012.

[3] D. B. Kirk, W. W. Hwu “Programming Massively Parallel
Processors – A Hands-on Approach” NVidia, Morgan Kaufmann

Burlington, USA, 2010.

L. Erdodi • File Compression with LZO Algorithm Using NVIDIA CUDA Architecture

